Piston Bowl Optimization for a Diesel Engine with Variable Compression Ratio

STAR Global Conference 2016
Prague, March 2016
Christian Schramm, Carolus Gruenig, Maximilian Brauer, Matthias Diezemann
Why VCR?

Why Variable Compression Ratio (VCR)?

Thermal efficiency
Specific power / downsizing
Low friction powertrain

Real Driving Emissions
- Soot / NOx at high CR ↓
- EGR at full load with constant PFP CR ↓
- HC / CO at low load CR ↑

Cold Test -7°C for Diesel
- Cold start ability CR ↑
- HC, CO emission CR ↑
- Fuel conversion efficiency CR ↑
Content

1. Introduction
2. Simulation Approach
3. Simulation Results
4. Testing Results & Validation
5. Summary
Content

1. Introduction
2. Simulation Approach
3. Simulation Results
4. Testing Results & Validation
5. Summary
Multiple link mechanisms

- Articulated con-rod
- Swinging crank
- Linking gear rack
- Linking con-rod

Alteration of kinematic lengths in the crank train

- Crankpin eccentric
- Piston pin eccentric
- Piston height adjustment
- Con-rod length adjustment

Repositioning of unmoving parts

- Additional volume
- Tilting cylinder-block
- Lifting cylinder-block
- Shifting crankshaft axis

→ All suitable concepts have a variable squish gap height
Introduction / Challenges with VCR

Variation Range for VCR

- Determined based on GT-Power studies
- Selected variation range: CR = 11 … 20

Impact on Combustion Chamber Geometry

CR = 20 (Part Load) vs CR = 11 (Full Load)

- Reduced piston bowl volume for CR = 20 reduces free spray penetration length
- Changed top dead center position for CR = 11 leads to different spray targeting
- Piston bowl shape needs to be developed for VCR requirements
1. Introduction
2. Simulation Approach
3. Simulation Results
4. Testing Results & Validation
5. Summary
Simulation Approach

- **Automated CFD meshing and model generation of segment models**
- **Define geometry based on a parametric piston bowl shape**
- **Piston bowl shape or selected parameters are scaled to fit a predefined compression ratio**
- **Call pro-STAR / STAR-CD®**
- **Automated Post-processing: Collecting simulation results in one txt/pdf-file**

Input File
- txt

Parametric Bowl
- CR = const.

STAR-CD Sector Model

Results File
- txt/pdf

Analyze Results and Decide new Variants
- Manually (by Engineer)
- Automatically (by Optimization Tool)

IAV Tool
Automated vs. Manual Approach

<table>
<thead>
<tr>
<th>Automated Approach</th>
<th>Manual Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Requires less man power</td>
<td>+ Very suitable to investigate different bowl layouts</td>
</tr>
<tr>
<td>+ Very suitable to find a global optimum</td>
<td>+ Separation of secondary effects possible / plausibility checks</td>
</tr>
<tr>
<td>+ Effective usage of computational resources</td>
<td>- Normally the optimum cannot be detected</td>
</tr>
<tr>
<td>- Too much parameters if all geometric parameters have to be considered</td>
<td>- More time-consuming</td>
</tr>
<tr>
<td>- Useful only for ‘fine tuning’ of a geometry (global optimum)</td>
<td></td>
</tr>
<tr>
<td>- Need of more simulation runs to find an optimum</td>
<td></td>
</tr>
</tbody>
</table>

→ For the given task the manual approach has been selected
Simulation Approach

1. Step:
Definition of different piston bowl base concepts (3)

<table>
<thead>
<tr>
<th>Concept</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omega</td>
<td></td>
</tr>
<tr>
<td>Flat Dish</td>
<td></td>
</tr>
<tr>
<td>Open W</td>
<td></td>
</tr>
</tbody>
</table>

2. Step:
Optimization of Piston Bowl Main Dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>20.0</td>
</tr>
<tr>
<td>CR</td>
<td>11.0</td>
</tr>
<tr>
<td>Ds Quench</td>
<td>4.7 mm</td>
</tr>
<tr>
<td>Ds Quench</td>
<td>0.0 mm</td>
</tr>
</tbody>
</table>

3. Step:
Optimization of Piston bowl features (collar, cone, …)

- E.g. open w-bowl

![Graph](graph.png)
Consideration of 2 operating conditions

Part Load:
- Engine Speed: 1200 min\(^{-1}\)
- IMEP: \(~8.5\) bar
- Compression Ratio (CR): 20

Full Load:
- Engine Speed: 4000 min\(^{-1}\)
- CO\(_2\)-Reduction
- Power Increase or Reduction of Friction
- Compression Ratio (CR): 11
Model Setup

Turbulence / Heat Transfer

<table>
<thead>
<tr>
<th>Component</th>
<th>Model/Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbulence Model</td>
<td>k-(\varepsilon)-model, high Reynolds</td>
</tr>
<tr>
<td>Wall Function</td>
<td>Kader</td>
</tr>
</tbody>
</table>

Spray

<table>
<thead>
<tr>
<th>Component</th>
<th>Model/Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nozzle model</td>
<td>MPI2</td>
</tr>
<tr>
<td>Atomization model</td>
<td>Huh</td>
</tr>
<tr>
<td>Break-up model</td>
<td>Reitz + Submodels</td>
</tr>
<tr>
<td>Droplet-Wall-Interaction</td>
<td>Bai</td>
</tr>
<tr>
<td>Liquid Fuel</td>
<td>C\textsubscript{12}H\textsubscript{26} (DF2)</td>
</tr>
</tbody>
</table>

Combustion/Ignition

<table>
<thead>
<tr>
<th>Component</th>
<th>Model/Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignition model</td>
<td>Double Delay Ignition Model</td>
</tr>
<tr>
<td>Combustion model</td>
<td>ECFM-3Z</td>
</tr>
<tr>
<td>Evaporated Fuel</td>
<td>C\textsubscript{12}H\textsubscript{26} (DF2)</td>
</tr>
</tbody>
</table>

Emissions

<table>
<thead>
<tr>
<th>Component</th>
<th>Model/Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Zeldovich</td>
</tr>
<tr>
<td>Soot</td>
<td>ERC</td>
</tr>
</tbody>
</table>
Model Calibration

Spray Model Calibration

Combustion Model Calibration

\[n = 1200 \text{ min}^{-1}, \text{ IMEP } \sim 8.5 \text{ bar} \]

\[n = 4000 \text{ min}^{-1}, \text{ Full Load} \]
1. Introduction
2. Simulation Approach
3. Simulation Results
4. Testing Results & Validation
5. Summary
Simulation Results

Soot – NO – ISFC – Trade-off

<table>
<thead>
<tr>
<th>Constant:</th>
<th>Variable:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Pressure, EGR-Rate, Swirl at IVC, Inj. Fuel Mass, Injection Timing (PI, MI)</td>
<td>CA50 %, IMEP, pCyl,max</td>
</tr>
</tbody>
</table>

Bowl Concepts:
- omega
- flat dish
- open w

Single Variants:
- base (CR = 16.2)
- final w variant

Part Load, CR = 20

- NO_x +37%; PM +34%
- ISFC -5.8%

Full Load, CR = 11

- PM -65%
- ISFC -1.1%

→ Piston geometry selected for max. ISFC benefit
→ Increase of Soot and NO unavoidable with CR=20
Simulation Results

Part Load (n = 1200 min\(^{-1}\), IMEP ~8.5 bar, 365 deg CA)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>CR</th>
<th>S\text{SQUISH}</th>
<th>Temperature [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td>16</td>
<td>0.9 mm</td>
<td></td>
</tr>
<tr>
<td>Omega-Bowl</td>
<td>20</td>
<td>0.9 mm</td>
<td></td>
</tr>
<tr>
<td>Flat Bowl</td>
<td>20</td>
<td>0.9 mm</td>
<td></td>
</tr>
<tr>
<td>w-Bowl</td>
<td>20</td>
<td>0.9 mm</td>
<td></td>
</tr>
</tbody>
</table>

Full Load (n = 4000 min\(^{-1}\), Full Load, 375 deg CA)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>CR</th>
<th>S\text{SQUISH}</th>
<th>Temperature [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td>16</td>
<td>0.9 mm</td>
<td></td>
</tr>
<tr>
<td>Omega-Bowl</td>
<td>11</td>
<td>5.6 mm</td>
<td></td>
</tr>
<tr>
<td>Flat Bowl</td>
<td>11</td>
<td>5.6 mm</td>
<td></td>
</tr>
<tr>
<td>w-Bowl</td>
<td>11</td>
<td>5.6 mm</td>
<td></td>
</tr>
</tbody>
</table>
Simulation Results

Swirl and Wall Heat Losses

<table>
<thead>
<tr>
<th>Constant:</th>
<th>Variable:</th>
<th>Bowl Concepts:</th>
<th>Single Variants:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Pressure, EGR-Rate, Swirl at IVC, Inj. Fuel Mass, Injection Timing (PI, MI)</td>
<td>CA50 % IMEP, $p_{Cyl,max}$</td>
<td>omega, flat dish, open w</td>
<td>base (CR = 16.2), final w variant</td>
</tr>
</tbody>
</table>

- Smaller Swirl Number @ SOI due to smaller piston bowl volume
- Smaller piston bowl surface → potential for decreased wall heat losses
1. Introduction
2. Simulation Approach
3. Simulation Results
4. Testing Results & Validation
5. Summary
Testing Results & Validation

Test-bench Environment

- Single Cylinder Engine (SCE)
- Replacement of piston
- Variation of CR by inserting washers between crank train and cylinder block
Testing Results & Validation

Comparison Test-rig / CFD Results

Part Load, CR = 20

- ISFC: +77% (+4.2% to -5.8%)
- Soot: +34% (+32% to +37%)
- NOx: +37%

Full Load, CR = 11

- ISFC: -1.3% to -1.1%
- Soot: -64% to -65%
- NOx: ±0% to -5%

<table>
<thead>
<tr>
<th>Injection</th>
<th>EGR</th>
<th>Fuel Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCE (testing)</td>
<td>Pilot injection control w.r.t. heat release</td>
<td>Ext. EGR controled w.r.t. Iso-NOx / Iso-Soot</td>
</tr>
<tr>
<td>CFD</td>
<td>const. Injection Rate</td>
<td>Fuel mass controled w.r.t. IMEP</td>
</tr>
</tbody>
</table>

→ Testing results confirm CFD predictions
→ Slight differences in predicted fuel consumption due to different conditions

© IAV · 03/2016 · STAR Global Conference in Prague · C. Schramm · Piston Bowl Optimization for a VCR Diesel Engine
1. Introduction
2. Simulation Approach
3. Simulation Results
4. Testing Results & Validation
5. Summary
Summary

- Almost all technical solutions for a variable compression ratio (CR) have a variable squish gap height
- For a CR variation range from 11 to 20 the squish gap height must be changed by 4.7 mm → Big differences in spray-wall-interaction
- Manual, step-wise optimization of piston bowl design at 2 operating points
- Piston bowl optimization results:
 - ~5% reduction of ISFC/CO₂ at part load
 - The increase of NO/Soot emissions at part load caused by the increase of CR could not be prevented
 - At rated power slight reduction of ISFC/CO₂ (~1.2%) and strong decrease of soot emissions
- In general the simulation results were confirmed by single cylinder engine
Thank You

Christian Schramm
IAV GmbH
Auer Straße 54, 09366 Stollberg (GERMANY)
Phone +49 371 237-34570
christian.schramm@iav.de
www.iav.com